Fience Whiskers

Sathya Narayanan Climate Analyst sathya@carbonbetter.com

Della Jung Director, Business Development della@carbonbetter.com

www.carbonbetter.com hello@carbonbetter.com

city of Austin, Texas, could be proud of. To remain true to the brand, each decision along the way has focused on the duo's goal of a well-made and uniquely Austin whiskey. While this began with using an Austin-based branding agency, The Butler Bros., to design the brand identity, it continued through the use of a regional architecture firm, Overland Partners, to collaborate on the design of the property and through each step of the distilling process from equipment selection to barreling, aging,

sustainability, and beyond.

Fierce Whiskers is proud to be a local grain-to-glass Austin distillery among a small percentage of minority-owned distilleries in the United States.

ierce Whiskers Distillery (FW) was founded by Asian Americans and native Texans, Tri Vo and Tim Penney. Longtime collaborators (their first business together was in high school), Tri and Tim started the distillery

with a singular goal in mind—creating world-class whiskey that the

Tri Vo, Co-Founder

FW is focused on making the best whiskey in Texas while considering sustainability at every step, from grain to glass.

The Story of Fierce Whiskers

While the story of FW began in 2015, the facility broke ground in 2018 and began barreling whiskey in 2020. Each step in the Fierce Whiskers process aims to make Austin a premier home for whiskey. This includes the decisions to select the most efficient distilling equipment, an American-made copper still, and using Texas grains to ensure the grain-to-glass quality of its whiskey.

FW is a unique American craft distillery and leans into the idea of greatness through stubbornness. Making world-class whiskey is not easy. Central to FW's production philosophy is the Texas Tight Cut, which means only using the absolute best part of the distillate for its whiskey. Adding to the uniqueness of FW is its five-story rickhouse, which was built on-site and employed louvers to harness the extreme atmospheric conditions of Central Texas.

FW aims to be a foundational building block in the craft spirits world of Austin while staying true to its roots in the local community and ensuring direct ties to the local economy.

What's New for 2023

Since breaking ground in 2018 and releasing <u>annual sustainability reports</u> since 2021, FW has continued to make progress on its journey to bring fantastic whiskey to Austin, Texas, while also furthering its commitment to environmental sustainability. This report has been updated for 2023 to reflect progress made since the previous sustainability report.

"I think we are in a really special position that many companies that we compete against are simply not: We didn't have to retrofit sustainability into our brand or our processes—we thought about it from day one, and it's been pretty impactful in terms of our approach and how things happen."

-Tri Vo, on incorporating sustainability into operations

Building on its limited releases, FW had its <u>first main product release</u> in 2023. As a result, bottling and distribution have become a larger part of its operations. As FW continues to grow, it is maintaining its commitment to incorporate sustainability considerations into each part of its business.

FW has also made an effort to share its sustainability journey with others by participating in panel discussions like <u>Brands Shaking Up Alcohol's Carbon Footprint</u>, which highlighted the value of getting started on a sustainability journey before releasing a product and showed other brands that taking action is doable and essential.

Since 2021, FW has included Scope 3 emissions sources in its carbon footprint calculations, inclusive of ingredient production and transport. Learn more in the Environmental Impacts section. While FW's operations and, in turn, its carbon footprint have increased from the early days of production starting in 2020, FW is pleased to report a decrease in emissions intensity year-over-year since 2021 as it continues to improve operational efficiencies.

Footprint

Grain to Glass

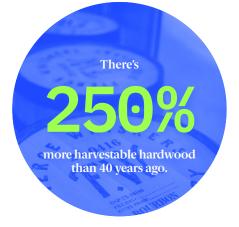
FW is focused on ensuring the highest quality of whiskey is produced, beginning with grain selection, barrel aging, and bottling. FW begins with milling regionally produced grains to create unique mash combinations for its whiskeys, including bourbon and rye. FW worked closely with a thirty-year Kentucky bourbon veteran to carefully select each piece of equipment, including a Kentuckyproduced copper still and a custom rickhouse. Throughout the distillation and aging process, FW has introduced its own techniques to leverage the extreme atmospheric conditions in Austin, TX, to produce a distinctly Texan whiskey. This includes improved efficiency of equipment using sophisticated automation systems that optimize quality control, consistency, and safety.

From Grain to Glass

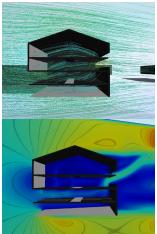
Distillery Location

Finding a location to build a distillery with accessibility to the airport and the Austin community was difficult but essential to FW's plan of making Austin a new home for whiskey. The FW site was developed on six acres in Southeast Austin, roughly seven miles from downtown Austin and six miles from Austin-Bergstrom International Airport. The FW site includes a five-story rickhouse and distillery with a tasting room. The location provides ample space and an urban tasting room experience catering to the local customer base. Positioning the facility in Austin proper allows for shorter travel distances and reduced carbon emissions associated with customers traveling to the distillery to visit and tour its unique distilling operations. The proximity to the airport was an intentional choice from a logistics perspective, allowing distribution efficiencies down the road while simultaneously making it easier for tourists to incorporate a distillery tour into their Austin visit.

White Oak Barrels


FW's ethos of "greatness through stubbornness" continues in the selection of barrels for its whiskeys. As with traditional American Bourbon, FW ages bourbon and rye in new white oak barrels for years at a time, giving its whiskeys distinctive and rich flavors. FW selected Kelvin Cooperage white oak barrels as Kelvin Cooperage ensures 100% of every white oak log purchased gets processed and utilized, with soak scraps being utilized in the toasting process as this can yield different oak profiles, and has created a used barrel program for reselling once-filled barrels and minimizing waste. Additionally, Kelvin Cooperage works with the White Oak Initiative² to ensure the long-term sustainability of America's white oak forests through research, technical assistance, program implementation, communication, and policy. These efforts have contributed to white oak being the second fastest-growing hardwood resource, including an annual growth rate exceeding harvest by 70%.3 As part of FW's commitment to barrel sustainability, FW purchased previously used bourbon barrels for aging their non-whiskey spirits. Using these bourbon barrels not only reduces waste associated with white oak barrels in general, but it also provides a unique flavor profile to FW's non-whiskey spirits.

Packaging


FW does its packaging and bottling in house. By doing this, FW eliminates the need for additional transportation and associated emissions. FW selected Tapi for its special release and distribution closures as they have been committed to sustainable production methods through adoption of renewable energy sources and continuing to invest in research and innovation. FW sources the closures from locations where Tapi has achieved Bronze and Silver Ecovadis sustainability ratings for the year 2023. For its bar and special release bottles, FW sources from Berlin Packaging, who works with local organizations and other companies to support wildlife protection, support local sustainability initiatives, and inspire the next generation.

A natural ventilation analysis was conducted to optimize direct air flow and fast ventilation based on the main wind direction.

Rickhouse

The five-story bonded rickhouse, with four stories above ground and one below, is uniquely designed to allow FW more creative control over the flavor of its whiskey while harnessing the harsh summer climate conditions in Central Texas. FW selected the building location during the design phase based on the outcomes of a wind study, allowing the rickhouse to capture ideal prevailing winds. The louver system, with manual louvers on each side of the building, harnesses airflow to aid in temperature regulation. Typically, rickhouses have small windows rather than manual louvers. FW installed its own weather system to monitor temperature and humidity, allowing the distiller to make louver adjustments based on real-time weather data. The building is designed to maximize efficiency under harsh climate conditions while minimizing energy waste. The building is not HVAC-equipped; instead, there is a ridge vent and three fans in place in addition to the manual louvers system should ambient temperatures reach a level that might negatively impact the whiskey flavor, but to date, the fans have not been utilized.

Equipment

Co-Head Distiller Cole Miller transferring bourbon mash from the cooker to the fermenter.

American-made copper still from Vendome Copper & Brassworks, Louisville, KY.

Boiler

FW installed a Fulton Vertical Spiral Ribbed Tube (VSRT) boiler system with a brake-horsepower (bhp) of 40 bph to generate steam for use in the fermentation and distillation processes. VSRT boilers are optimized so that the spiral rib heat exchanger can transfer a high amount of heat in a compact space. The VSRT has an industry-leading operating efficiency of up to 86% (the industry standard is 82%), gross thermal efficiency of up to 82.5%, and 99.75% steam quality. Steam is applied to the fermentation batch tanks to maintain temperature and is also used for cleaning and sterilization of the tanks. Given the importance of steam to the distillation process and that the boiler is the largest consumer of natural gas at the facility, FW prioritized selecting an efficient boiler that was built to last to improve overall energy efficiency at the facility while minimizing life cycle impacts.

Reverse Osmosis Water

The distillery uses an economically efficient reverse osmosis system to produce high-purity water for use as feed water for the boiler and to adjust the alcohol proof prior to barreling and bottling. This system is capable of producing from 2.5 to 20 gallons of water per minute or up to 28,800 gallons per day, which can be produced as needed and stored on-site. Water is arguably the most important ingredient in the distillation process, and this machine aids in producing the highest quality of whiskey without impacting the flavor profile, ensuring flavor consistency over time.

HVAC

The FW distillery relies on an HVAC system consisting of a small split unit with a 4-ton capacity and 4 large split units with 7.5 tons of capacity each to heat and cool the distillery and tasting room. The large units utilize refrigerant R-410A for cooling, which is considered to be a high global warming potential (GWP) refrigerant and would yield higher greenhouse gas (GHG) emissions if vented to the atmosphere as compared to low GWP refrigerants. However, the system is a closed loop, meaning that any potential emissions associated with refrigerant leaking are limited. FW performs all necessary preventative maintenance to reduce the risk of leaking.

To reduce demand on the HVAC system, the FW team aims to keep a low-temperature differential between the outside and inside (e.g., thermostat in the distillery is set to 80° F in summer conditions rather than comfort cooling the process area). There are sensors on all doors to the outside that monitor when doors are open, even partially, to prevent HVAC usage when doors are open. The City of Austin required the installation of low-level vents in the distilling area to reduce fire and alcoholic vapor risks; the vents also take in cooled air. To increase HVAC efficiency and minimize the uptake of cooled air by the vents, FW is considering installing alcoholic vapor monitors to reduce run time of the vents.

Chiller

To maximize efficiency for temperature regulation in the distilling process, FW installed a closed-loop chiller system sized for efficiency in medium to high temperature applications. The chiller system leverages high efficiency scroll compressors uniquely suited to chilling in distillery operations. Keeping with FW's focus on a reduced supply chain impact and increased environmental standards for manufacturing, the G&D Chiller was manufactured in the United States.

Lighting

FW chose light-emitting diodes (LED) for the interior and exterior of the distillery, the tasting room, and the rickhouse. All exterior lighting is set with timers to only operate when it is dark outside. Interior lights in low-traffic areas, such as hallways and bathrooms, are equipped with motion sensors and only turn on when motion is detected. FW prioritized energy reduction in its selection and management of lighting.

Merchandise

FW's commitment to the highest quality goes beyond the production of its local Austin whiskey and carries through to its merchandise.

T-Shirts

The FW T-shirts are produced from SUPIMA® Cotton, which is grown in California under strict quality-controlled guidelines.⁷ Due to challenges with recycling cotton and fibers and the risk of contamination with other fibers, such as spandex, recycled yarn cost is generally higher than virgin cotton yarn costs but is consistently of a lower quantity, making responsibly grown cotton the preferable choice for the FW shirts. While the cotton utilized for the shirts is 100% grown in the U.S., the garments are produced in a windmill-powered, Fair Trade Certified™ facility outside of the U.S. FW wants to sell high-quality merchandise that meets leading environmental standards. At this stage, FW has not found a shirt company that manufactures in the U.S. that meets its environmental criteria. To contribute to the local economy, FW has chosen to screen print shirts locally in Austin, TX; and in the future, they would like to identify a manufacturer that can produce the shirts in the U.S. to their standards.

Tasting Room Glasses

FW has selected lower-impact glassware for serving their craft whiskey. The glassware is sourced from a manufacturer that recycles 99.9% of their cullet and commits to responsible sourcing of glass components, including incorporation of recycled glass.⁸ The manufacturer has retrofitted furnaces at their New Jersey facility with new filter systems and emissions controls to reduce the carbon emissions associated with the natural gas-fired furnaces.⁹

Environmental Impacts

→ UN Sustainable Development Goals

The United Nations (UN) has published 17 Sustainable
Development Goals (SDGs) as part of a call to action to meet the UN's 2030 Agenda for Sustainable
Development goals. Fierce Whiskers' environmental efforts directly support the following SDGs:

Scope 1 (Direct)

Emissions from natural gas used at the distillery.

Scope 2 (Indirect)

Emissions from generation of electricity used at the distillery.

Scope 3 (Indirect)

Emissions from production and transport of inputs.

Baseline

FW barreled its first whiskey and moved it to the rickhouse for aging on September 30, 2020, with operations reaching a steady state in mid-November 2020. Depending on the product, the distillery currently operates 15-18 hours a day and could ramp up additional production hours in the future based on demand. In 2023, FW launched its first main product, resulting in additional bottling and distribution activities.

To develop the environmental baseline, including water, energy, greenhouse gas emissions, and waste, an entire year of data at steady state operating conditions is needed. FW has now completed environmental impact calculations from startup through December 31, 2023, comprehensively reflecting current operations, which do not yet include bottling and distribution. FW values transparency and sees the importance of sharing data early on in its journey.

Methods and Boundaries

Methods

In preparation for this report, FW has referenced the Sustainability Accounting Standards Board (SASB) standard for the Food & Beverage Sector, Alcoholic Beverages, issued in October 2018. At this time, FW has focused on the Energy Management, Water Management, and Ingredient Sourcing sections of the SASB standard.

As a supplement to the accounting metrics and topics in the SASB standard, FW has also evaluated climate impacts by quantifying Scope 1 (direct) and Scope 2 (grid, indirect) GHG emissions. Scope 1 GHG emissions from direct combustion of natural gas on site were quantified utilizing International Energy Agency (IEA) reference data, natural gas consumption from Texas Gas Services billing data, and emission factors from Title 40 of the Code of Federal Regulations Part 98, Subpart C. Scope 2 emissions associated with purchased grid energy were quantified based on FW's Austin Energy bills, and emission factors from the U.S. Environmental Protection Agency's (EPA's) Emissions & Generation Resource Integrated Database (eGRID). Total GHG emissions are estimated in carbon dioxide equivalents (CO₂e).

As part of this report, FW has identified high water-stressed ingredients according to SASB standards in coordination with water stress levels based on the World Resources Institute's Water Risk Atlas tool, Aqueduct. The majority of FW's ingredients are grains produced near Amarillo, Texas, which falls under Aqueduct's low to medium-risk category. It is important to note that the grains are not produced at FW's physical location, however, it is something FW is consciously aware of and considers when making purchasing decisions.

Water management on site follows SASB's definitions of total water withdrawn and total water consumed. However, water utility billing does not easily reflect total water consumption as the City of Austin's water utility billing system bills customers based on total water discharged. According to the billing statements for FW, the total water discharged equals the total water consumed. FW is working with the City of Austin to determine a better estimate of total water discharged and is tracking water consumption for their

production process and whiskey barreling. FW will be installing a discharge meter to monitor actual water discharged from the facility and is tracking total water consumption in terms of total alcohol that is barreled.

Boundaries

All data reflected in the Water, Climate & Energy, and Waste sections below are the result of direct and indirect consumption within the boundaries of the operational footprint of FW. FW has estimated intensity of emissions, energy consumption and water use against produced alcohol, utilizing the proof gallon unit of measure for the production rates. Once bottling commences, FW will be able to calculate impacts against bottles of a certain proof but cannot do so until the angel's share is determined.

At this time, Scope 3 (indirect) emissions associated with the supply chain, distribution, and transit to and from the site by employees and customers have not yet been considered. Data herein are reflective of the calendar year 2023.

→ Angel's Share (noun) | /ˈeɪndʒəlz ˈʃɛr/

The amount of distilled spirits lost to evaporation from the barrel into the air as the whiskey ages.

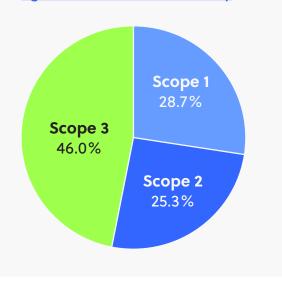
Barrels & Proof Gallons

The produced quantity of alcohol in units of measure of proof gallon is calculated by the barrels produced and the proof of alcohol contained in each barrel. The proof gallon unit of measure is used for reporting to the federal Alcohol and Tobacco Tax and Trade Bureau (TTB).¹⁰ FW has quantified the proof gallons for 2023 in order to map emissions, energy, and water consumption impacts against actual production rates of alcohol as barreled. In 2023, FW produced a total of 1,536 barrels, which totaled 97,065 proof gallons.

To relate environmental and energy impacts to a single 750 milliliter (mL) bottle of 90-proof whiskey as barreled, referred to as "bottle" henceforth, FW has assumed a value of 250 bottles per barrel.

Water

FWhastwowatermeters, one for irrigation and another for non-irrigation water use. However, as mentioned, FW is not calculating its exact water consumption aside from the total volume of alcohol that is barreled. In 2023, FW withdrew a total of 219,000 irrigation gallons and 2,880,404 non-irrigation gallons, with a total of 83,940 gallons being barreled.


Climate & Energy

FW has calculated its GHG emissions based on a combination of operational data and representative emission factors. For details on all estimated emissions and corresponding assumptions, please refer to the Appendix. Table 1 below summarizes FW's 2023 emissions results.

Table 1: 2023 Emissions Summary

	metric tons CO₂e	kg CO₂e
Scope 1	309.64	309,639
Scope 2	272.51	272,512
Scope 3	495.50	495,501
Total	1,077.65	1,077,652

Figure 1: 2023 Emissions Summary

Scope 1 Emissions

FW quantifies the Scope 1 combustion emissions associated with natural gas, which is combusted by the high-efficiency VSRT boiler for steam generation. The fuel totals are based on utility bills from Texas Gas Services and assume all gas purchased is combusted. In 2023, FW consumed a total of 5,830 million British thermal units (MMBtus) of natural gas and emitted a total of 309.64 metric tons of CO_2e from natural gas combustion. These totals translate to an estimated emissions rate of 0.81 kg CO_2e per bottle (3.19 kg CO_2e per proof gallon) from natural gas combustion and an estimated natural gas consumption rate of 0.02 MMBtus per bottle (0.06 MMBtus of natural gas per proof gallon produced).

Scope 2 Emissions

FW has quantified the indirect emissions associated with the consumption of electricity at the site using location-based emission factors from the EPA's eGRID database. The estimated emissions are more conservative than a market-based approach, which would take into account Austin Energy's residual grid mix of an estimated 51% renewables as compared to the Electric Reliability Council of Texas (ERCOT) regional mix, which includes an estimated 25.7% renewables. During the 2023 annual period, FW has emitted an estimated 272.51 metric tons of CO₂e from electricity usage and has purchased a total of 735,197 kilowatt hours (kWh) from Austin Energy. FW also generated 66,927 kWh from its solar array in 2023, accounting for 9.1% of its total electricity consumption for the year. FW's 2023 electricity consumption translates to an estimated emissions rate of 0.71 kg CO₂e per bottle produced (2.81 kg CO₂e per proof gallon) from indirect electricity emissions. FW utilized an average of 1.91 kWh of electricity per bottle produced (7.57 kWh of electricity per proof gallon).

Scope 3 Emissions

FW sources inputs, including raw ingredients, barrels, and bottles, globally for whiskey production at its Austin distillery, with a focus on ingredient sourcing as close to the distillery as possible. FW has estimated emissions associated with the manufacture and/or agricultural production of its inputs using representative Life Cycle Assessment (LCA) factors and purchase quantities. For the 2023 annual period, the emissions associated with input production are 447.18 metric tons of CO_2e . Emissions associated withthetransportofingredients to the distillery are estimated through the application of the EPA factor for maritime transport with the nautical miles in addition to trucking and air freight mileage of shipping routes. International and domestic ingredient transport for 2023 production generated approximately 48.32 metric tons of CO_2e . In total, the indirect emissions generated from FW's 2023 supply chain were 495.50 metric tons of CO_2e .

Energy Intensity for 2023 is 0.02 GJ per bottle (0.09 GJ per proof gallon of alcohol) produced. GHG Emissions Intensity for 2023 is 2.81 kg CO₂e per bottle (11.10 kg CO₂e per proof gallon of alcohol).

Total Energy Usage and Emissions

In 2023, FW generated 1,077.65 total metric tons of CO_2e , inclusive of Scopes 1, 2, and 3. For electric and gas combined, FW consumed a total of 9,059 GJ in 2023.

Energy Intensity for production in 2023 is 0.02 GJ per bottle (0.09 GJ per proof gallon of alcohol) produced. GHG Emissions Intensity for the same period is 2.81 kg CO_2e per bottle (11.10 kg CO_2e per proof gallon of alcohol) produced.

To track progress over time, FW has compared its emissions results on an annual basis from startup through December 31, 2023, as summarized below in Table 2.

The emissions increase from 2021 to 2022 was anticipated due to increased production rates and increased ingredient sourcing. FW is pleased to be tracking a decrease in emissions intensity and energy intensity year-over-year since it began tracking this metric. Note that FW has updated its approach for estimating the number of bottles from the as-barreled alcohol utilizing 250 bottles per barrel estimated based on limited release data; in the Initial Report, bottles were estimated based on the proof gallon as barreled and converted to 90-proof bottles without accounting for any of the potential evaporative losses. As such, the emissions intensity values from Initial Report have been updated to reflect the assumption of 250 bottles per barrel.

Solar

FW made the conscious decision to invest in solar energy, which was installed in April 2021. While these panels only generate a portion of the electricity FW consumes, FW understands that each step in helping reduce its impact is meaningful. By installing on-site solar, FW is reducing its load from the local grid, which can assist Austin Energy in long-term energy management, water management, and GHG goals. Austin Energy's grid is a mix of fossil fuel-fired generation and renewable energy, produced locally and regionally. In most cases of fossil fuel fired generation, water must be considered for cooling purposes and steam generation.

Table 2: Summary of Annual Results

	2021		2022		2023	2023		
Emissions Summary	metric tons CO₂e	kg CO₂e	metric tons CO₂e	kg CO₂e	metric tons CO₂e	kg CO₂e		
Scope 1	225	225,382	311	310,917	310	309,639		
Scope 2	192	192,155	250	249,883	273	272,512		
Scope 3	383	383,164	623	622,236	496	495,501		
Total	800	800,701	1,184	1,183,037	1,078	1,077,652		

Emissions Intensity (All Scopes)	2021	2022	2023
kg CO ₂ e/ proof gallon as barreled	14.6	12.4	11.10
kg CO ₂ e/ 90 proof bottle*	3.6	3.1	2.81

Energy Intensity (Electricity & Natural Gas)	2021	2022	2023	
Total GJ consumed	6,523	8,866	9,059	
GJ/ proof gallon as barreled	0.12	0.09	0.09	
GJ/ 90 proof bottle*	0.03	0.02	0.02	

Production	2021	2022	2023
Proof Gallons (as barreled)	54,692	95,251	97,065
Barrels	884	1,508	1,536
Estimated 90 Proof Bottles*	221,000	377,000	384,000

^{*} assumes 250 bottles per barrel

Energy Efficiency

A portion of FW's energy efficiency comes from its automation systems, which seek to produce high-quality whiskey as well as to ensure quality control over time. Facilities of this size do not typically have automation systems to this extent. FW specifically selected automation systems to ensure the quality and consistency of its products; additional benefits include reduced energy consumption and reduced water loss.

Fierce Whiskers tasting room in Austin, TX.

Spent FW Grains Feed Local Cattle

<u>,</u>

Spent Grains Donated to Farmers:

125,000

lb / month

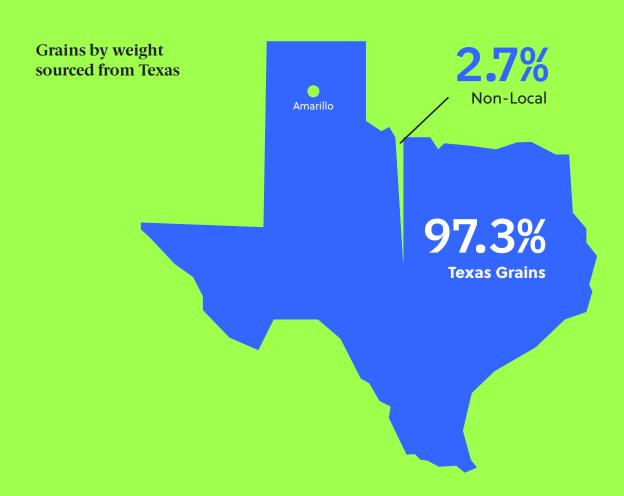
Circular Economy
(noun) | /ˈsɜrkjələr ɪˈkanəmi/

An economic system based on the principles of designing out waste and pollution, keeping products and materials in use, and regenerating natural systems.

Waste

FW is focused on reducing its waste, from energy and water to the supply chain. As part of its efforts toward making mindful decisions in energy efficiency, solar energy investment, water conservation, and its grain-to-glass initiative, FW is committed to reducing waste and participating in the circular economy. This includes finding off-takers for all of its spent grains. Ensuring the use of these grains is incredibly important to FW, which can be seen in its long-term commitments to local farmers who use the spent grains as animal feed to local competitions using the spent grains to create biodegradable products.

FW's spent grain from mash consists of roughly 125,000 pounds of grain mixed with 40,000 gallons of water on a monthly basis. FW is committed to finding consistent and sustainable solutions for this waste and currently donates all spent grain to local farmers.


"For me, having a way to dispose of our used grain mashes responsibly is hugely important, but using it to feed animals locally is an added bonus!"

-Cole, Co-Head Distiller

Ingredient Sourcing

The Ingredient Sourcing within the SASB standard for the Food & Beverage Sector, Alcoholic Beverages, has been used to share FW's story. As part of this standard, identifying each ingredient, the percentage of beverage ingredients sourced from regions with high or extremely high baseline water stress, and the distance from the distillery has been taken into account. In all cases, FW's decisions in selecting its ingredients were as purposeful as possible. For most grains, a regional company from Texas was selected; however, the supplier was not able to provide high-quality options for all required grains, resulting in the selection of suppliers located further than anticipated, including Canada and Germany. Meanwhile, 97.3% of the grains by weight and sourced by FW were produced near Amarillo, Texas. Amarillo lies within Texas' Region A water planning area, where the primary source of water comes from the Ogallala Aquifer, an aquifer that is used at a rate that exceeds recharge. According to the Texas Water Development Board's Draft 2022 State Water Plan, the state as a whole is still expected to have severe water shortages as demand far exceeds supply. According to the World Resources Institute's Aqueduct, a Water Risk Atlas tool, the Amarillo region is considered low-medium risk.

Based on SASB's standards, the percentage of ingredients used from a region with high risk to water resources is high as grains are the majority of FW's ingredients. While purchasing regionally produced grains is beneficial to the regional economy and FW's carbon footprint, FW will continue to balance its ingredient selections based on environmental and socioeconomic impacts.

Goals & Improvements

Data Transparency & Baseline

This report reflects FW's activities to date as production has ramped up over time. Based on existing data, the facility has reached an operational steady state, with production having scaled from launch in 2020 to present. The 2023 annual results, which include Scope 3 emissions, will be utilized to evaluate optimization opportunities moving forward. While FW has incorporated sustainability and energy efficiency into every facet of the facility and distillation process, FW strives for continual improvement. FW is committed to data transparency and seeks continual improvement on its sustainability journey. Despite not having a set baseline yet, FW sees the value and importance of sharing data from day one to present.

Solar

In April 2021, FW installed a solar project consisting of a rooftop solar array, a centralized inverter, and related electrical metering and safety equipment. FW selected high-efficiency inverters (98.5% California Energy Commission optimized) and power optimizers (99.5%). If production and energy demand increase from the current operational steady state, FW will evaluate the potential for additional energy generation and the potential for energy storage with the goal of taking steps to reduce the impact on load. For example, this may include coordinating with Austin Energy to shift production times to time periods of low grid demand.

Water Conservation

FW follows the City of Austin's conservation stage requirements for landscaping water use by only watering one day per week, between the hours of 7 p.m. to midnight and/or midnight to 10 a.m. Austin's climate is part of what makes FW's aging process unique, but the summer climate also creates significant landscaping water demand. FW is evaluating rainwater collection as a potential option moving forward to reduce water consumption.

While not directly related to FW's water consumption, FW is actively looking into the impacts of water on grain selection in relation to where its grains are produced. As with many sustainability choices, there is not a clear winner—selecting regionally produced grain from a water-stressed region adds to the complexity of FW's decisions and weighs heavily on decisions moving forward.

Currently, the facility is billed based on the total amount discharged for non-irrigation gallons. According to billing statements, the total amount discharged equals the total amount of water consumed. However, this does not properly reflect actual water consumption, as a portion of the water in the facility is used for whiskey production and is barreled. Moving forward, FW will continue to monitor the total non-irrigation water discharged and compare this to the total water billed by the City of Austin. The difference between water discharged and water barreled should indicate the consumed process water for the distillery.

Energy Efficiency

FW was required to install low-level vents in the distilling area to reduce fire and alcoholic vapor risks. While these are required to ensure safety for the distillery and its staff, the vents also increase the loss of temperature-controlled air to the environment. To increase HVAC efficiency and minimize the uptake of cooled air by the vents, FW is considering the installation of alcoholic vapor monitors to reduce the runtime of the vents. These monitors would allow FW to close vents when vapors are at levels considered safe or, if de minimis, increase energy efficiency of the HVAC system.

Future of the Brand 12

FW focuses on utilizing the best ingredients combined with a data-driven approach to ensure the highest quality and most enjoyable taste from each barrel. This means transparency in production and its sustainability efforts. Every single decision revolves around uncompromising quality while keeping energy efficiency in mind. As FW ramps up production, it plans to grow its impact locally: FW is proud to serve Austinites, source grain as close as possible, and support local farmers with its spent grain. FW strives for continual improvement in all that it does and will continue to share data every step of the way.

→ Footnotes

- 1 https://kelvincooperage.com/
- 2 https://www.whiteoakinitiative.org/
- 3 https://www.iscbarrels.com/2016/06/16/whiteoak-sustainability/
- 4 https://tapigroup.com/
- 5 https://tapigroup.com/sustainability-closure/
- 6 https://www.berlinpackaging.com/2023sustainability-report/
- https://originalfavorites.com/pages/supima
- 8 https://www.arc-intl.com/en/commitments/
- 9 http://www.cardinalfoodservice.com/ sustainability
- 10 https://www.ttb.gov/

- 11 https://www.wri.org/aqueduct
- The FW tasting room follows all required TABC Code and Rules specific to the facility. https://www.tabc.texas.gov/texas-alcohol-laws-regulations/tabc-code-rules/

Appendices

A. 2023 Supplemental Calculations

1. 2023 Carbon Emissions, Scope 1, 2, 3

	Metric Tons CO₂e	kg CO ₂ e
Scope 1	309.64	309,639
Scope 2	272.51	272,512
Scope 3	495.50	495,501
Total	1,077.65	1,077,652

Emissions Intensity (All Scopes)	
kg CO₂e/proof gallon	11.10
kg CO ₂ e/90 proof bottle	2.81

Energy Intensity (Electricity and Natural Gas)	
Total GJ consumed	9,059
GJ/proof gallon	0.093
GJ/90 proof bottle	0.024

2. 2023 Production

Proof Gallons	97,065
Estimated Bottles based on 250 bottles per barrel	384,000
Number of Barrels	1,536

3. 2023 Natural Gas Calculations (Scope 1)

Billing Cycle Start Date	Billing Cycle End Date	Number of Days	Total NG Consumed (ccf-hundreds of cubic feet)	Total NG Consumed (cf)	HHV (BTU/cf)	Total Btus of Natural Gas	Total GJ	kg CO ₂	kg CH ₄	kg N ₂ O	kg CO ₂ e	Metric Tons of CO ₂ e	Total MMBtus of Natural Gas
12/14/22	01/16/23	33	2,482.112	248,211.25	1037	257,395,065	283	13,657	0.26	0.03	13,671	13.67	257
01/16/23	02/15/23	30	4,902.188	490,218.80	1037	508,356,896	559	26,973	0.51	0.05	27,001	27.00	508
02/15/23	03/16/23	29	5,163.056	516,305.60	1037	535,408,907	589	28,409	0.54	0.05	28,438	28.44	535
3/16/23	4/14/23	29	5,059.768	505,976.80	1037	524,697,942	577	27,840	0.52	0.05	27,869	27.87	525
4/14/23	5/15/23	31	5,351.092	535,109.20	1037	554,908,240	610	29,443	0.55	0.06	29,474	29.47	555
5/15/23	6/14/23	30	4,981.640	498,164.00	1037	516,596,068	568	27,411	0.52	0.05	27,439	27.44	517
6/14/23	7/14/23	30	4,747.257	474,725.70	1037	492,290,551	542	26,121	0.49	0.05	26,148	26.15	492
7/14/23	8/15/23	32	5,409.357	540,935.70	1037	560,950,321	617	29,764	0.56	0.06	29,795	29.79	561
8/15/23	9/14/23	30	3,772.646	377,264.60	1037	391,223,390	430	20,758	0.39	0.04	20,780	20.78	391
9/14/23	10/16/23	32	4,587.029	458,702.90	1037	475,674,907	523	25,239	0.48	0.05	25,265	25.27	476
10/16/23	11/14/23	29	4,238.764	423,876.40	1037	439,559,827	484	23,323	0.44	0.04	23,347	23.35	440
11/14/23	12/14/23	30	3,428.354	342,835.40	1037	355,520,310	391	18,864	0.36	0.04	18,883	18.88	356
12/14/23	1/17/24	34	2,092.898	209,289.80	1037	217,033,523	239	11,516	0.22	0.02	11,528	11.53	217
		Total	56,216.161	5,621,616.15		5,829,615,946	6,413	309,319	5.83	0.58	309,639	309.64	5,830

Summary of Scope 1 Emissions and Natural Gas Energy Consumption

	Total	per proof gallon produced	per 90 proof bottle
kg CO₂e	309,639	3.19	0.81
Metric Tons of CO₂e	310	3.19E-03	8.06E-04
GJ	6,413	0.066	0.017
MMBtu	5,830	0.060	0.015

- 1 FW uses Texas Gas Services natural gas. Since 2014, Texas Gas has achieved a 22.1% reduction in pipeline CO₂e emissions through pipeline replacement programs.
- Utilizing the EIA average American HHV for end users. The HHV was the same for 2021-2023. https://www.eia.gov/totalenergy/data/monthly/ pdf/sec12_5.pdf
- For the unit conversion between BTU and GJ: 0.0000011 GJ/BTU
- Per 40 CFR 98 Subpart C, table C-1, the emission factor for emissions of CO₂ from the combustion of Natural Gas is 53.06 kg CO₂/MMBtu
- Per 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of CH₄ from the combustion of Natural Gas is 0.001 kg CH₄ /MMBtu
- 6 Per 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of N2O from the combustion of Natural Gas is $0.0001\,kg\;N_2O/MMBtu$
- 7 To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.

25 CH₄ 298 N₂O

- 8 There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.
- 9 The primary consumer of natural gas is the VSRT boiler, which has a high thermal efficiency and long life cycle.
- Proof gallon is a standard unit of measure for distilled spirits, relating volume and alcohol content: https://www.ttb.gov/distilled-spirits/conversion

https://www.ttb.gov/distilled-spirits/conversion-tables

4. 2023 Electric Calculations (Scope 2)

						N 57 1 15		Location	on-Based	Emissions	
Start Date	End Date	Total Consumption in 2023 (kWh)*	Total Consumption (MWh)	Total Consumption GJ	Total Produced by On-Site Solar (kWh)	% of Total Energy Consumption Generated by On-site Solar	kg CO ₂	kg CH ₄	kg N ₂ O	kg of CO ₂ e	Metric Tons of CO ₂ e
12/14/2022	1/15/2023	24,995	24.99	89.98	2,378	9.51%	9,224	0.60	0.10	9,265	9.26
1/15/2023	2/15/2023	57,326	57.33	206.37	4,326	7.55%	21,155	1.38	0.23	21,249	21.25
2/15/2023	3/15/2023	54,010	54.01	194.44	5,010	9.28%	19,931	1.30	0.22	20,020	20.02
3/15/2023	4/15/2023	58,936	58.94	212.17	4,936	8.38%	21,749	1.41	0.24	21,846	21.85
4/15/2023	5/15/2023	60,843	60.84	219.03	5,593	9.19%	22,453	1.46	0.24	22,552	22.55
5/15/2023	6/15/2023	67,157	67.16	241.77	6,657	9.91%	24,783	1.61	0.27	24,893	24.89
6/15/2023	7/15/2023	78,137	78.14	281.29	7,137	9.13%	28,835	1.88	0.31	28,963	28.96
7/15/2023	8/15/2023	83,723	83.72	301.40	7,973	9.52%	30,896	2.01	0.33	31,033	31.03
8/15/2023	9/15/2023	69,124	69.12	248.85	7,124	10.31%	25,508	1.66	0.28	25,622	25.62
9/15/2023	10/15/2023	61,886	61.89	222.79	5,636	9.11%	22,837	1.49	0.25	22,939	22.94
10/15/2023	11/15/2023	51,053	51.05	183.79	4,303	8.43%	18,840	1.23	0.20	18,924	18.92
11/15/2023	12/15/2023	41,409	41.41	149.07	3,659	8.84%	15,281	0.99	0.17	15,349	15.35
12/15/2023	1/15/2024	26,598	26.60	95.75	2,195	8.25%	9,815	0.64	0.11	9,859	9.86
	Total	735,197	735.20	2,646.71	66,927	9.10%	271,306	17.64	2.94	272,512	272.51

^{*} January and December data adjusted by billing days for 2023 usage only

Summary of Scope 2 Emissions and Electricity Consumption

	Total	per proof gallon produced	per 90 proof bottle
kg CO₂e	272,512	2.81	0.71
Metric Tons of CO₂e	273	2.81E-03	7.10E-04
GJ	2,647	0.027	0.007
MWh	735	0.008	0.002
kWh	735,197	7.57	1.91

- FW's electric provider is Austin Energy, a City of Austin utility. As of June 2024, Austin Energy's generation mix was at 51% renewable energy, including solar and wind. Austin Energy oversees a mix of >4,600 MW of total generation capacity and operates three natural gas powered plants in the Austin area. They are also part owners of 2 power plants outside of Austin (one coal and one nuclear fuel). Purchase Power Aggrements (PPAs) are in place for the renewables in their portfolio.
 - https://austinenergy.com/ae/about/environment/renewable-power-generation

https://austinenergy.com/ae/about/company-profile/electric-system/power-plants

- For the unit conversion between BTU and GJ: 0.0000011 GJ/BTU
- 3 The location based emission factor for the regional ERCOT grid was determined from EPA's eGRID database. The 2022 data was issued on 1/30/2024. Tab SRL22 was utilized for ERCOT subregion data.

https://www.epa.gov/egrid/download-data

4 The annual eGRID sub-region total emission rate outputs for GHGs are as follows, in kg/MWh:

369.025 CO₂ 0.004 N₂O 0.024 CH₄ 370.665 CO₂E

The grid mix accounted for in the eGRID emission factors for ERCOT includes:

74.30% Non-renewables 25.70% Renewables

- 5 There are 1,000 kWh in a MWh.
- 6 There are 1,000 kg in a metric ton.

5. 2023 Ingredient Production (Scope 3)

Name of Ingredient/Source	Amount Purchased	Unit of Measure	LCA Factor	Unit of Measure	LCA Factor Converted	Unit of Measure	Emissions (Metric Tons CO ₂ e)	Emissions (kg CO ₂ e)	Data Source
Corn	907,060	lbs	390	g CO₂e/kg corn	0.18	kg CO₂e/lb	160.46	160,460	ď
Wheat (Hard Red Winter)	304,818	lbs	0.15	kg CO₂e/Ib wheat	0.15	kg CO₂e/lb	45.72	45,723	ď
Barley, Base Malt	190,200	lbs	570	g CO₂e/kg barley	0.26	kg CO₂e/lb	49.18	49,176	ď
Rye	95,550	lbs	870	g CO₂e/kg rye	0.39	kg CO₂e/lb	37.71	37,706	ď
Rye, Malted	8,000	lbs	870	g CO₂e/kg rye	0.39	kg CO₂e/lb	3.16	3,157	ď
Agave Syrup Concentrate	3,803	lbs	0.1	kg CO₂e/kg agave syrup	0.05	kg CO₂e/lb	0.17	173	ď
Panela Sugar (Rum)	2,640	lbs	0.438	kg CO₂e/kg panela	0.20	kg CO₂e/lb	0.52	524	ď
Yeast	769	lbs	3204	g CO₂e/kg yeast	3.20	kg CO₂e/kg	2.46	2,464	ď
Yeast Nutrient	122	lbs	460	g CO₂e/kg yeast nutrient	0.46	kg CO₂e/kg	0.06	56	ď
Enzymes	4,511	lbs	1.3	kg CO₂e/kg amylase	1.3	kg CO₂e/kg	5.86	5,864	ď
Baking Soda	8,250	lbs	1.17	kg CO₂e/kg	0.53	kg CO₂e/lb	4.38	4,378	ď
Cleaning Chemicals - Caustic	110	gal	1.09	kg CO₂e/kg caustic cleaning agent	5.56	kg CO₂/gal	0.61	611	ď
Cleaning Chemicals - Non-caustic	25	gal	0.824	kg CO₂e/kg non-caustic cleaning agent	3.43	kg CO₂/gal	0.09	86	ď
Barrels	1,536	barrels	85.4	kg CO₂e/ barrel	85.4	kg CO₂e/ barrel	131.17	131,174	ď
Bar & Special Release Bottles	7,072	bottles	0.656	kg CO₂e/kg glass	0.328	kg CO₂e/ bottle	2.32	2,320	ď
Distribution Bottles	5,268	bottles	0.656	kg CO₂e/kg glass	0.5904	kg CO₂e/ bottle	3.11	3,110	ď
Bar & Special Release Closures	7,072	closures	93.99	g CO₂e/ closure	0.009399	kg CO₂e/ closure	0.07	66	LCA factor provided by supplier
Distribution Closures	5,268	closures	93.99	g CO₂e/ closure	0.009399	kg CO₂e/ closure	0.05	50	LCA factor provided by supplier
Bar & Special Release Heat Shrink Capsules	7,072	capsules	0.48	kg CO₂e/kg PVC	0.00048	kg CO₂e/ capsule	0.00	3	ď
Distribution Foil Capsules	5,268	capsules	0.48	kg CO₂e/kg PVC	0.00144	kg CO₂e/ capsule	0.01	8	ď
Bar & Special Release Labels	7,072	labels	1.95	kg CO₂e/kg polypropylene	0.0039	kg CO₂e/ label set	0.03	28	ď
Distribution Labels	5,268	labels	1.95	kg CO₂e/kg polypropylene	0.0078	kg CO₂e/ label set	0.04	41	ď
						Total	447.18	447,179	

- The LCA Factor for Agave Syrup Concentrate was taken from an approximate factor from agave nectar.
- 2 The LCA Factor for Yeast Nutrient was taken from an approximate factor from diammonium phosphate.
- 3 The LCA Factor for cleaning chemicals (caustic) was taken from an approximate factor from 50% sodium hydroxide solution.
- 4 The LCA factor for cleaning chemicals (non caustic) was taken as the sum of the product of individual compositions of below mentioned chemicals and their respective emissions factors: 0.8237 kgCO,e/kg
- 5 Cleaning chemicals (non caustic) composition from supplier:

45% Disodium Carbonate20% Sodium percarbonate7.50% Tetrasodium EDTA2% sodium metasilicate

- The LCA Factor for the labels was taken from an approximate value from polypropylene.
- For the unit conversion of kilograms to pounds: 2.20462 lb / kg
- For the unit conversion of kilograms to grams: 1,000 g / kg
- 9 For the unit conversion of metric tons to kilograms: 1,000 kg / metric ton
- 10 Weight of a barrel: 105 lb
- Weight of a bar bottle: 500 g
- Weight of a distribution bottle: 900 g
- 13 Weight of a bar cork: 8 g
- 14 Weight of a distribution cork: 13 g
- 15 Weight of a bar capsule: 1 g
- 16 Weight of a distribution foil capsule: 3 g

- 17 Weight of a bar label set: 2 g
- 18 Weight of a distribution label set: 4 g
- 19 Density of 50% Sodium hydroxide: 11.24 lb/gal
- 20 For the unit conversion of liters to gallons: 3.787 L/gal
- 21 Density of 50% sodium silicate cleaners (non caustic): 1.26 kg/L
- Density of cleaning chemicals non caustic provided by the supplier: 1.1 g/cm³
- For the unit conversion of cm³ to gal: 0.000264172 cm³/gal

6. 2023 Ingredient Transportation (Scope 3)

Name of Ingredient/Source	Location / Region	Port to Port Nautical Miles	Distance by Truck (mi)	Distance by Aircraft	Amount Purchased (lbs)	Ship Ton- Miles	Truck Ton- Miles	Aircraft Ton-Miles
Corn	Hondo, TX		117		907,060	0	53,063	0
Wheat (Hard Red Winter)	Amarillo, TX		492		304,818	0	74,985	0
Barley, Base Malt	Ft Worth, TX		198		190,200	0	18,830	0
Rye	Amarillo, TX		492		95,550	0	23,505	0
Rye, Malted	Ft Worth, TX		198		8,000	0	792	0
Agave Syrup Concentrate	Shakopee, MN		1,136		3,803	0	2,160	0
Panela Sugar (Rum)	Medley, FL		1,348		2,640	0	1,779	0
Yeast	Danville, KY		1,054		769	0	405	0
Yeast Nutrient	Houston, TX		161		122	0	10	0
Enzymes	Danville, KY		1,054		4,511	0	2,377	0
Baking Soda	Houston, TX		161		8,250	0	664	0
Cleaning Chemicals - Caustic	Chatanooga, TN		937		1,236	0	579	0
Cleaning Chemicals - Non-caustic	Commerce City, CO		909		263	0	120	0
Barrels	Louisville, KY		1,036		161,280	0	83,543	0
Bar & Special Release Bottles	Steinbach am Wald, Germany	3,557	2,385		7,796	15,955	9,296	0
Distribution Bottles	Mexico City, MX		902		10,453	0	4,714	0
Bar & Special Release Closures	Norristown, PA		1,672		125	0	104	0
Distribution Closures	Cordoba, Argentina	4,768	170	1,192	151	311	13	22
Bar & Special Release Heat Shrink Capsules	Savanna, GA		1,166		16	0	9	0
Distribution Foil Capsules	Lapuebla de Labarca, Spain	5,088	170	1,272	35	77	3	6
Bar & Special Release Labels	Smithville, TX		42		31	0	1	0
Distribution Labels	Napa, CA		1,818		46	0	42	0
					Total	16,342	276,995	28

Ingredient Emissions

Pollutant	Ship	Truck	Aircraft	Total
CO₂ (kg)	1,340.0	46,535.2	25.4	47,901
CH ₄ (kg)	0.533	0.415	0.000	0.948
N₂O (kg)	0.034	1.302	0.001	1.337
CO₂e (kg)	1,363.587	46,933.528	25.606	48,323
CO₂e (Metric tons)	1.364	46.934	0.026	48.323

- Distances are estimated based on representative ingredient sourcing locations.
- 2 Flight distances are estimated based on departure and arrival airports: https://www.airmilescalculator.com/
- For the unit conversion between lb and kg: 0.453592 kg/lb
- For the unit conversion between miles and km: 0.621371 miles/km
- For the unit conversion between miles and nautical miles: 1.15078 miles/nautical mile
- 6 For the unit conversion between kg and tons: 907.185 kg/ton

- 7 Distance by sea between ports determined using with the port of Houston as the destination: http://ports.com/
- B Distribution emission factors published by EPA in June 5, 2024 in Table 8, https://www.epa.gov/system/files/documents/2024-02/ghg-emission-factors-hub-2024.pdf

Ship	Truck	Air	Emission Factors
0.082	0.168	0.905	kg CO ₂ /ton-mile
0.0326	0.0015	0.000	g CH ₄ /ton-mile
0.0021	0.0047	0.0279	g NO ₃ /ton-mile

- 9 There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.
- To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.

25 CH₄ 298 N₂O

- 11 Weight of a single bottle: 0.5 kg
- 12 Weight of an empty whiskey barrel: 100 lb

7. 2023 City of Austin Water

Billing Cycle Start Date	Billing Cycle End Date	Non-Irrigation Gallons*	Irrigation Gallons	Total Water (Irrigation & Non-Irrigation)	Non-Irrigation Discharge	Total water (liquor) barreled (gal)	Non-irrigation use (gal) per bottle
12/14/2022	1/14/2023	110,013	0	110,013	110,013	7,155	0.191
1/14/2023	2/14/2023	241,900	0	241,900	241,900	7,314	0.205
2/14/2023	3/15/2023	246,200	0	246,200	246,200	7,352	0.225
3/15/2023	4/17/2023	269,600	800	270,400	269,600	8,373	0.209
4/17/2023	5/16/2023	237,000	67,800	304,800	237,000	7,802	0.194
5/16/2023	6/15/2023	241,400	74,800	316,200	241,400	6,897	0.206
6/15/2023	7/17/2023	260,600	28,300	288,900	260,600	7,272	0.204
7/17/2023	8/16/2023	254,500	11,400	265,900	254,500	7,756	0.205
8/16/2023	9/15/2023	239,500	9,700	249,200	239,500	5,304	0.149
9/15/2023	10/16/2023	249,400	8,900	258,300	249,400	6,514	0.161
10/16/2023	11/15/2023	228,100	6,200	234,300	228,100	5,941	0.199
11/15/2023	12/14/2023	211,100	5,800	216,900	211,100	3,803	0.110
12/14/2023	1/16/2024	91,091	5,300	96,391	91,091	2,457	0.027
	Total	2,880,404	219,000	3,099,404	2,880,404	83,940	

^{*} January and December data adjusted by billing days for 2023 usage only

Summary of Scope 3 Emissions

	Total*	per proof gallon produced	per 90 proof bottle
kg CO₂e	495,501	5.10	1.29
Metric Tons of CO₂e	495.50	0.01	1.29E-03

^{*} Ingredient/ Input Production and Transport

B. 2022 Supplemental Calculations

1. 2022 Carbon Emissions, Scope 1, 2, 3

	Metric Tons CO₂e	kg CO ₂ e
Scope 1	310.92	310,917
Scope 2	249.88	249,883
Scope 3	622.24	622,236
Total	1,183.04	1,183,037

Emissions Intensity (All Scopes)	
kg CO ₂ e/proof gallon	12.42
kg CO ₂ e/90 proof bottle	3.14

Energy Intensity (Electricity and Natural Gas)	
Total GJ consumed	8,866
GJ/proof gallon	0.093
GJ/90 proof bottle	0.024

2. 2022 Production

Proof Gallons	95,251
Estimated Bottles based on 250 bottles per barro	el 377,000
Number of Barrels	1,508

3. 2022 Natural Gas Calculations (Scope 1)

Billing Cycle Start Date	Billing Cycle End Date	Total NG Consumed (ccf-hundreds of cubic feet)	Total NG Consumed (cf)	HHV (BTU/cf)	Total Btus of Natural Gas	Total GJ	kg CO ₂	kg CH ₄	kg N ₂ O	kg CO _z e	Metric Tons of CO ₂ e	Total MMBtus of Natural Gas
12/14/21	01/17/22	2,306.09	230,609.45	1037	239,142,000	263	12,689	0.24	0.02	12,702	12.70	239
01/17/22	02/14/22	4,555.25	455,524.80	1037	472,379,218	520	25,064	0.47	0.05	25,090	25.09	472
02/14/22	03/16/22	4,788.31	478,830.70	1037	496,547,436	546	26,347	0.50	0.05	26,374	26.37	497
3/16/22	4/14/22	4,212.28	421,228.00	1037	436,813,436	480	23,177	0.44	0.04	23,201	23.20	437
4/14/22	5/16/22	4,552.60	455,260.00	1037	472,104,620	519	25,050	0.47	0.05	25,076	25.08	472
5/16/22	6/14/22	4,610.86	461,086.40	1037	478,146,597	526	25,370	0.48	0.05	25,397	25.40	478
6/14/22	7/15/22	4,884.97	488,497.40	1037	506,571,804	557	26,879	0.51	0.05	26,906	26.91	507
7/15/22	8/16/22	5,205.43	520,543.00	1037	539,803,091	594	28,642	0.54	0.05	28,672	28.67	540
8/16/22	9/15/22	4,561.87	456,186.90	1037	473,065,815	520	25,101	0.47	0.05	25,127	25.13	473
9/15/22	10/17/22	5,078.31	507,830.70	1037	526,620,436	579	27,942	0.53	0.05	27,971	27.97	527
10/17/22	11/14/22	4,265.25	426,524.80	1037	442,306,218	487	23,469	0.44	0.04	23,493	23.49	442
11/14/22	12/14/22	4,634.70	463,470.00	1037	480,618,390	529	25,502	0.48	0.05	25,528	25.53	481
12/14/22	1/16/23	2,792.38	279,237.65	1037	289,569,448	319	15,365	0.29	0.03	15,380	15.38	290
	Total	56,448.30	5,644,829.80		5,853,688,507	6,439	310,597	5.85	0.59	310,917	310.92	5,854

Summary of Scope 1 Emissions and Natural Gas Energy Consumption

	Total	per proof gallon produced	per 90 proof bottle
kg CO₂e	310,917	3.26	0.82
Metric Tons of CO₂e	311	3.26E-03	8.25E-04
GJ	6,439	0.068	0.017
MMBtu	5,854	0.061	0.016

- 1 FW uses Texas Gas Services natural gas. Since 2014, Texas Gas has achieved a 22.1% reduction in pipeline CO₂e emissions through pipeline replacement programs.
- Utilizing the EIA average American HHV for end users. The HHV was the same for 2021 and 2022. https://www.eia.gov/totalenergy/data/monthly/ pdf/sec12_5.pdf
- For the unit conversion between BTU and GJ: 0.0000011 GJ/BTU
- Per 40 CFR 98 Subpart C, table C-1, the emission factor for emissions of CO₂ from the combustion of Natural Gas is 53.06 kg CO₂/MMBtu
- Per 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of CH₄ from the combustion of Natural Gas is 0.001 kg CH₄ /MMBtu
- 6 Per 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of N2O from the combustion of Natural Gas is $0.0001\,kg\;N_2O/MMBtu$
- 7 To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.

25 CH₄ 298 N₂O

- 8 There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.
- 9 The primary consumer of natural gas is the VSRT boiler, which has a high thermal efficiency and long life cycle.
- Proof gallon is a standard unit of measure for distilled spirits, relating volume and alcohol content: https://www.ttb.gov/distilled-spirits/conversion-tables

4. 2022 Electric Calculations (Scope 2)

	V of Total Passers				Location	on-Based	Emissions				
Start Date	End Date	Total Consumption in 2022 (kWh)	Total Consumption (MWh)	Total Consumption GJ	Total Produced by On-Site Solar (kWh)	% of Total Energy Consumption Generated by On-site Solar	kg CO ₂	kg CH ₄	kg N ₂ O	kg of CO ₂ e	Metric Tons of CO ₂ e
12/15/0201	1/18/2022	27,739	27.74	99.86	3,518	12.68%	10,236	0.67	0.11	10,282	10.28
1/18/2022	2/15/2022	49,878	49.88	179.56	6,628	13.29%	18,406	1.20	0.20	18,488	18.49
2/15/2022	3/17/2022	52,391	52.39	188.61	7,641	14.58%	19,334	1.26	0.21	19,420	19.42
3/17/2022	4/15/2022	47,900	47.90	172.44	9,900	20.67%	17,676	1.15	0.19	17,755	17.75
4/15/2022	5/16/2022	56,190	56.19	202.28	8,190	14.58%	20,736	1.35	0.22	20,828	20.83
5/16/2022	6/15/2022	65,018	65.02	234.06	10,768	16.56%	23,993	1.56	0.26	24,100	24.10
6/15/2022	7/15/2022	70,303	70.30	253.09	10,553	15.01%	25,944	1.69	0.28	26,059	26.06
7/15/2022	8/16/2022	51,000	51.00	183.60	10,896	21.36%	18,820	1.22	0.20	18,904	18.90
8/16/2022	9/15/2022	65,161	65.16	234.58	8,411	12.91%	24,046	1.56	0.26	24,153	24.15
9/15/2022	10/17/2022	66,530	66.53	239.51	9,280	13.95%	24,551	1.60	0.27	24,660	24.66
10/17/2022	11/15/2022	48,333	48.33	174.00	5,833	12.07%	17,836	1.16	0.19	17,915	17.92
11/15/2022	12/14/2022	45,870	45.87	165.13	3,370	7.35%	16,927	1.10	0.18	17,002	17.00
12/14/2022	1/15/2023	27,835	27.84	100.21	2,695	9.68%	10,272	0.67	0.11	10,318	10.32
	Total	674,148	674.15	2,426.93	97,683		248,778	16.18	2.70	249,883	249.88

^{*} January and December data adjusted by billing days for 2022 usage only

Summary of Scope 2 Emissions and Electricity Consumption

	Total	per proof gallon produced	per 90 proof bottle
kg CO₂e	249,883	2.62	0.66
Metric Tons of CO₂e	250	2.62E-03	6.63E-04
GJ	2,427	0.025	0.006
MWh	674	0.007	0.002
kWh	674,148	7.08	1.79

1 FW's electric provider is Austin Energy, a City of Austin utility. As of May 2022, Austin Energy's generation mix was 40% renewable energy, including solar and wind. Austin Energy oversees a mix of >4,600 MW of total generation capacity and operates three natural gas powered plants in the Austin area. They are also part owners of two power plants outside of Austin (one coal and one nuclear fuel). Purchase Power Agreements (PPAs) are in place for the renewables in their portfolio.

https://austinenergy.com/ae/about/environment/renewable-power-generation

https://austinenergy.com/ae/about/company-profile/electric-system/power-plants

- For the unit conversion between BTU and GJ: 0.0000011 GJ/BTU
- The location-based emission factor for the regional ERCOT grid was determined from the EPA's eGRID database. The 2021 data was issued on 1/30/2023. Tab SRL21 was utilized for ERCOT subregion data.

https://www.epa.gov/egrid/download-data

4 The annual eGRID sub-region total emission rate outputs for GHGs are as follows, in kg/MWh:

369.025 CO₂ 0.004 N₂O 0.024 CH₄ 370.665 CO₂E

The grid mix accounted for in the eGRID emission factors for ERCOT includes:

74.30% Non-renewables 25.70% Renewables

- 5 There are 1,000 kWh in a MWh.
- 6 There are 1,000 kg in a metric ton.

5. 2022 Ingredient Production (Scope 3)

Name of Ingredient/Source	Amount Purchased	Unit of Measure	LCA Factor	Unit of Measure	LCA Factor Converted	Unit of Measure	Emissions (Metric Tons CO₂e)	Emissions (kg CO ₂ e)	Data Source
Corn	848,672	lbs	390	g CO₂e/kg corn	0.18	kg CO₂e/Ib	150.13	150,131	ď
Wheat (Hard Red Winter)	299,750	lbs	540	g CO₂e/kg wheat	0.24	kg CO₂e/Ib	73.42	73,421	岱
Barley, base malt	150,535	lbs	570	g CO₂e/kg barley	0.26	kg CO₂e/Ib	38.92	38,921	区
Rye	233,038	lbs	870	g CO₂e/kg rye	0.39	kg CO₂e/Ib	91.96	91,963	ď
Agave Syrup Concentrate	3,020	lbs	0.1	kg CO₂e/kg agave syrup	0.05	kg CO₂e/Ib	0.13	137	ď
Yeast	358	kilos	3,204	g CO₂e/kg yeast	3.20	kg CO₂e/Ib	1.15	1,148	ď
Yeast Nutrient	39	kilos	460	g CO₂e/kg yeast nutrient	0.46	kg CO₂e/Ib	0.02	18	区
Barrels	1,508	each	85.4	kg CO₂e/ barrel	85.4	kg CO₂e/ barrel	128.78	128,783	ď
Enzymes	2,100	kilos	1.3	kg CO₂e/kg amylase	1.3	kg CO₂e/kg	2.73	2,730	ď
Baking Soda	19,000	lbs	0.138	ton CO₂e/ton baking soda	0.06	kg CO₂/lb	1.19	1,189	ď
Citric Acid	250	lbs	0.41	kg CO₂e/kg citric acid	0.19	kg CO₂/lb	0.05	5	ď
Cleaning Chemicals	598	lbs	0.92	kg CO₂e/kg bleach	0.42	kg CO₂/lb	0.25	249	ď
Bottles	2,846	each	0.656	kg CO₂e/kg glass	0.328	kg CO₂e/ bottle	0.93	933	ď
						Total	489.67	489,697	

- 1 The LCA Factor for Agave Syrup Concentrate was taken from an approximate factor from agave nectar.
- 2 The LCA Factor for Yeast Nutrient was taken from an approximate factor from diammonium phosphate.
- The LCA Factor for cleaning chemicals was taken from an approximate factor from bleach.
- 4 For the unit conversion between kilograms to pounds: 2.20462 lb/kg
- For the unit conversion between kilograms to grams: 1000 g/kg
- For the unit conversion between metric tons to kilograms: 1000 kg/metric ton
- 7 Weight of a bottle: 500 g

6. 2022 Ingredient Transportation (Scope 3)

Name of Ingredient/Source	Location / Region	Port to Port Nautical Miles	Distance by Truck (mi)	Amount Purchased (lbs)	Ship Ton-Miles	Truck Ton-Miles
Corn	Amarillo, Texas		668	848,672		283,456
Wheat (Hard Red Winter)	Amarillo, Texas to Ft Worth		668	299,750		100,116
Barley, base malt	Amarillo, Texas to Ft Worth		668	150,535		50,279
Rye	Amarillo, Texas		668	233,038		77,835
Rye, malted	Vernon, BC, Canada		2,265	16,885		19,122
Agave Syrup Concentrate	Maple Plain, MN		1,043	3,020		1,575
Yeast	Louisville, Kentucky		1,412	162		115
Yeast Nutrient	Louisville, Kentucky		1,412	18		12
Barrels	Lebanon, KY		1,014	150,800		76,456
Enzymes	Louisville, Kentucky		1,036	952		493
Baking Soda	Ewing, NJ		1,460	19,000		13,870
Citric Acid	Markolshreim, France	6,479	180	250	932	22
Cleaning Chemicals	Denver, CO		933	598		279
Bottles	Germany / Quebec, Canada	3,670	1,972	645		
				Total	932	623,630

Ingredient Emissions

Pollutant	Ship	Truck	Total
CO ₂ (kg)	38	131,586	131,624
CH₄ (kg)	0.017	1	1
N₂O (kg)	0.001	3	3
CO₂e (kg)	39	132,528	132,567
CO₂e (Metric tons)	0.039	133	132.57

- Distances are estimated based on representative ingredient sourcing locations.
- For the unit conversion between lb and kg: 0.453592 kg/lb
- 3 For the unit conversion between miles and km: 0.621371 miles/km
- 4 For the unit conversion between miles and nautical miles: 1.15078 miles/nautical mile
- 5 For the unit conversion between kg and tons:
- Distance by sea between ports determined using with the port of Houston as the destination: http://ports.com/
- Distribution emission factors published by the EPA in April 2022 in Table 8: https://www.epa.gov/system/files/documents/2022-04/ghg_emission_factors_hub.pdf

Ship	Truck	Emission Factors
0.041	0.211	kg CO ₂ /ton-mile
0.0116	0.002	g CH ₄ /ton-mile
0.0116	0.0049	g NO ₂ /ton-mile
0.0183	0.002	g CH ₄ /ton-mile
0.0008	0.0049	a NO. /ton-mile

There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.

- To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.
 - 25 CH₄ 298 N₂O
- 10 Weight of a single bottle: 0.5 kg
- 11 Weight of an empty whiskey barrel: 100 lb

7. 2022 City of Austin Water

Billing Cycle Start Date	Billing Cycle End Date	Non-Irrigation Gallons*	Irrigation Gallons	Total Water (Irrigation & Non-Irrigation)	Non-Irrigation Discharge	Total water (liquor) barreled (gal)	Non-irrigation use (gal) per bottle
12/15/2021	1/17/2022	95,509	200	95,709	95,509	4,293	0.302
1/17/2022	2/15/2022	183,000	6,500	189,500	183,000	7,112	0.261
2/15/2022	3/17/2022	195,800	46,300	242,100	195,800	6,047	0.207
3/17/2022	4/15/2022	191,900	55,700	247,600	191,900	4,823	0.166
4/15/2022	5/16/2022	202,700	61,500	264,200	202,700	6,105	0.202
5/16/2022	6/16/2022	201,100	60,200	261,300	201,100	8,002	0.267
6/16/2022	7/15/2022	209,300	62,700	272,000	209,300	6,572	0.211
7/15/2022	8/16/2022	240,400	67,300	307,700	240,400	8,533	0.239
8/16/2022	9/15/2022	219,900	39,700	259,600	219,900	7,261	0.222
9/15/2022	10/17/2022	256,800	64,000	320,800	256,800	7,049	0.184
10/17/2022	11/15/2022	226,200	30,900	257,100	226,200	4,717	0.138
11/15/2022	12/14/2022	228,900	13,700	242,600	228,900	6,095	0.178
12/14/2022	1/14/2023	133,587	0	133,587	133,587	3,074	0.155
	Total	2,585,096	508,700	3,093,796	2,585,096	79,683	

^{*} January and December data adjusted by billing days for 2022 usage only

C. 2021 Supplemental Calculations

1. 2021 Carbon Emissions, Scope 1, 2, 3

	Metric Tons CO ₂ e	kg CO ₂ e
Scope 1	225	225,382
Scope 2	192	192,155
Scope 3	383	383,164
Total	800	800,701

Emissions Intensity (All Scopes)	
kg CO₂e/proof gallon	14.6
kg CO ₂ e/90 proof bottle	3.6

Energy Intensity (Electricity and Natural Gas)	
Total GJ consumed	6,523
GJ/proof gallon	0.119
GJ/90 proof bottle	0.030

2. 2021 Production

Proof Gallons	54,692
Estimated 90 Proof Bottles	221,000
Number of Barrels	884

3. 2021 Natural Gas Calculations (Scope 1)

Billing Cycle Start Date	Billing Cycle End Date	Total NG Consumed (ccf-hundreds of cubic feet)	Total NG Consumed (cf)	HHV (Btu/cf)	Total Btus of Natural Gas	Total GJ	kg CO ₂	kg CH ₄	kg N ₂ O	kg CO ₂ e	Metric Tons of CO ₂ e
12/16/20	01/19/21	2,072.30	207,229.50	1037	214,896,992	236	11,402	0.21	0.02	11,414	11.41
01/19/21	02/13/21	2,878.81	287,881.10	1037	298,532,701	328	15,840	0.30	0.03	15,857	15.86
02/13/21	03/17/21	1,638.04	163,803.50	1037	169,864,230	187	9,013	0.17	0.02	9,022	9.02
3/17/21	4/17/21	2,829.82	282,981.50	1037	293,451,816	323	15,571	0.29	0.03	15,587	15.59
4/17/21	5/17/21	2,723.88	272,387.90	1037	282,466,252	311	14,988	0.28	0.03	15,003	15.00
5/17/21	6/16/21	2,461.69	246,168.80	1037	255,277,046	281	13,545	0.26	0.03	13,559	13.56
6/16/21	7/17/21	3,915.66	391,565.90	1037	406,053,838	447	21,545	0.41	0.04	21,567	21.57
7/17/21	8/16/21	3,568.72	356,871.90	1037	370,076,160	407	19,636	0.37	0.04	19,657	19.66
8/16/21	9/15/21	4,225.52	422,552.20	1037	438,186,631	482	23,250	0.44	0.04	23,274	23.27
9/15/21	10/15/21	4,066.62	406,661.80	1037	421,708,287	464	22,376	0.42	0.04	22,399	22.40
10/15/21	11/15/21	3,903.74	390,374.20	1037	404,818,045	445	21,480	0.40	0.04	21,502	21.50
11/15/21	12/14/21	4,192.42	419,241.70	1037	434,753,643	478	23,068	0.43	0.04	23,092	23.09
12/14/21	1/17/22	2,441.75	244,174.71	1037	253,209,176	279	13,435	0.25	0.03	13,449	13.45
	Total	40,918.95	4,091,894.71		4,243,294,816	4,668	225,149	4.24	0.42	225,382	225.38

- FW uses Texas Gas Services natural gas. Since 2014, Texas Gas has achieved a 22.1% reduction in pipeline CO₂e emissions through pipeline replacement programs.
- Utilizing the EIA average American HHV for end users. The HHV was the same for 2021 and 2022. https://www.eia.gov/totalenergy/data/monthly/ pdf/sec12_5.pdf
- For the unit conversion between BTU and GJ: 0.0000011 GJ/BTU
- Per 40 CFR 98 Subpart C, table C-1, the emission factor for emissions of CO₂ from the combustion of Natural Gas is 53.06 kg CO₂ /MMBtu
- Fer 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of CH₄ from the combustion of Natural Gas is 0.001 kg CH₄ /MMBtu
- Per 40 CFR 98 Subpart C, Table C-2, the emission factor for emissions of N₂O from the combustion of Natural Gas is 0.0001 kg N₂O/MMBtu
- 7 To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.

25 CH₄ 298 N₂O

- 8 There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.
- 9 The primary consumer of natural gas is the VSRT boiler, which has a high thermal efficiency and long life cycle.
- 10 Proof gallon is a standard unit of measure for distilled spirits, relating volume and alcohol content: https://www.ttb.gov/distilled-spirits/conversion-tables

4. 2021 Electric Calculations (Scope 2)

				Location-Based Emissions					
Start Date	End Date	Total Consumption (kWh)	Total Consumption (MWh)	Total Consumption (GJ)	kg CO ₂	kg CH _₄	kg N ₂ O	kg of CO ₂ e	Metric Tons of CO ₂ e
12/15/2020	1/16/2021	17,419	17.42	62.71	6,468	0.42	0.05	6,495	6.50
1/16/2021	2/13/2021	28,750	28.75	103.50	10,675	0.69	0.09	10,720	10.72
2/13/2021	3/16/2021	40,000	40.00	144.00	14,853	0.96	0.12	14,915	14.91
3/16/2021	4/16/2021	31,000	31.00	111.60	11,511	0.74	0.09	11,559	11.56
4/16/2021	5/17/2021	30,500	30.50	109.80	11,325	0.73	0.09	11,373	11.37
5/17/2021	6/16/2021	32,500	32.50	117.00	12,068	0.78	0.10	12,118	12.12
6/16/2021	7/16/2021	50,250	50.25	180.90	18,659	1.21	0.15	18,737	18.74
7/16/2021	8/16/2021	51,000	51.00	183.60	18,937	1.22	0.15	19,017	19.02
8/16/2021	9/17/2021	62,500	62.50	225.00	23,207	1.50	0.19	23,305	23.30
9/17/2021	10/15/2021	49,817	49.82	179.34	18,498	1.20	0.15	18,575	18.58
10/15/2021	11/13/2021	44,830	44.83	161.39	16,646	1.08	0.13	16,716	16.72
11/13/2021	12/15/2021	49,778	49.78	179.20	18,483	1.19	0.15	18,561	18.56
12/15/2021	1/18/2022	26,992	26.99	97.17	10,022	0.65	0.08	10,065	10.06
	Total	515,336	515.34	1855.21	191,352	12.37	1.55	192,155	192.16

^{*} January and December data adjusted by billing days for 2021 usage only

1 FW's electric provider is Austin Energy, a City of Austin utility. As of June 2019, Austin Energy's generation mix was renewable energy, including solar and wind. Austin Energy oversees a mix of >5,000 MW of total generation capacity and operates three natural gas powered plants in the Austin area. They are also part owners of 2 power plants outside of Austin (one coal and one nuclear fuel). Purchase Power Agreements (PPAs) are in place for the renewables in their portfolio.

https://austinenergy.com/ae/about/environment/renewable-power-generation

https://austinenergy.com/ae/about/company-profile/electric-system/power-plants

- For the unit conversion between BTU and GJ: 0.0036 GJ/kWh
- The location-based emission factor for the regional ERCOT grid was determined from the EPA's eGRID database. The 2019 data was issued on 2/23/2021. Tab SRL19 was utilized for ERCOT subregion data.

https://www.epa.gov/egrid/download-data

The annual eGRID sub-region total emission rate outputs for GHGs are as follows, in kg/MWh:

371.315 CO₂ 0.003 N₂O 0.024 CH₄ 372.874 CO₂E

The grid mix accounted for in the eGRID emission factors for ERCOT includes:

77.20% Non-renewables 22.80% Renewables

- There are 1,000 kWh in a MWh.
- There are 1,000 kg in a metric ton.

5. 2021 Ingredient Production (Scope 3)

Name of Ingredient/Source	Amount Purchased	Unit of Measure	LCA Factor	Unit of Measure	LCA Factor Converted	Unit of Measure	Emissions (Metric Tons CO ₂ e)	Data Source
Corn	500,720	lbs	390	g CO₂e/kg corn	0.18	kg CO₂e/lb	88.58	ď
Wheat (Hard Red Winter)	190,070	lbs	540	g CO₂e/kg wheat	0.24	kg CO₂e/lb	46.56	ď
Barley	165,429	lbs	570	g CO₂e/kg barley	0.26	kg CO₂e/lb	42.77	ď
Rye	125,470	lbs	870	g CO₂e/kg rye	0.39	kg CO₂e/lb	49.51	ď
Agave Syrup Concentrate	6,040	lbs	0.1	kg CO₂e/kg agave syrup	0.05	kg CO₂e/lb	0.27	ď
Panela	3,020	lbs	0.57	kg CO₂e/kg panela	0.26	kg CO₂e/lb	0.78	ď
Yeast	510	kilos	3204	g CO₂e/kg yeast	3.20	kg CO₂e/lb	1.63	ď
Yeast Nutrient	40	kilos	460	g CO₂e/kg yeast nutrient	0.46	kg CO₂e/lb	0.02	ď
Barrels	886	each	85.4	kg CO₂e/ barrel	85.4	kg CO₂e/ barrel	75.66	ď
Enzymes	1660	kilos	1.3	kg CO₂e/kg amylase	1.3	kg CO₂e/kg	2.16	ď
Baking Soda	2000	lbs	0.138	ton CO₂e/ton baking soda	0.06	kg CO₂/lb	0.13	ď
Citric Acid	100	lbs	0.41	kg CO₂e/kg citric acid	0.19	kg CO₂/lb	0.02	岱
Cleaning Chemicals	200	lbs	0.92	kg CO₂e/kg bleach	0.42	kg CO₂/lb	0.08	区
						Total	308.18	

¹ The LCA Factor for Agave Syrup Concentrate was taken from an approximate factor from agave nectar.

- 2 The LCA Factor for Yeast Nutrient was taken from an approximate factor from diammonium phosphate.
- 3 The LCA Factor for cleaning chemicals was taken from an approximate factor from bleach.
- For the unit conversion between kilograms to pounds: 2.20462 lb/kg
- 5 For the unit conversion between kilograms to grams: 1,000 g/kg
- For the unit conversion between metric tons to kilograms: 1,000 kg/metric ton

6. 2021 Ingredient Transportation (Scope 3)

Name of Ingredient/Source	Location / Region	Port to Port Nautical Miles	Distance by Truck (mi)	Amount Purchased (lbs)	Ship Ton-Miles	Truck Ton-Miles
Corn	Amarillo, Texas		668	500,720		167,240
Wheat (Hard Red Winter)	Amarillo, Texas to Ft Worth		668	190,070		63,483
Barley, Base Malt	Amarillo, Texas to Ft Worth		668	145,314		48,535
Barley, Vienna Malt	Bamberg, Germany	6,429	499	935	3,459	233
Barley, Biscuit Malt	UK	6,089	169	3,190	11,176	270
Barley, Caramunich Malt	Bamberg, Germany	6,429	499	6,820	25,228	1,702
Barley, Brown Malt	Bamberg, Germany	6,429	499	1,650	6,104	412
Barley, Golden Promise Malt	UK	6,089	169	6,325	22,160	534
Barley, Melanoiden Malt	Bamberg, Germany	6,429	499	275	1,017	69
Barley, Peachwood Smoked Malt	Bamberg, Germany	6,429	499	700	2,589	175
Barley, Pilsner Malt	Amarillo, Texas to Ft Worth		668	220		73
Rye	Amarillo, Texas		668	118,870		39,703
Rye, Malted	Vernon, BC, Canada		2,265	6,600		7,474
Agave Syrup Concentrate	Maple Plain, MN		1,043	6,040		3,150
Panela Sugar - Rum Sugar	Orlando, Florida		1,596	3,020		2,410
Yeast	Louisville, Kentucky		1,412	510		360
Yeast Nutrient	Louisville, Kentucky		1,412	40		28
Barrels	Lebanon, KY		1,014	886		449
Enzymes	Louisville, Kentucky		1,036	1660		860
Baking Soda	Ewing, NJ		1,460	2000		1,460
Citric Acid	Markolshreim, France	6,479	180	100	373	9
Cleaning Chemicals	Denver, CO		933	200		93
				Total	72,107	338,722

Ingredient Emissions

Pollutant	Ship	Truck	Total
CO₂ (kg)	2,956	71,470	74,427
CH₄ (kg)	1	1	2
N₂O (kg)	0.1	2	2
CO₂e (kg)	3,007	71,982	74,988
CO₂e (Metric tons)	3	72	75

- Distances are estimated based on representative ingredient sourcing locations.
- For the unit conversion between lb and kg: 0.453592 kg/lb
- For the unit conversion between miles and km: 0.621371 miles/km
- For the unit conversion between miles and nautical miles: 1.15078 miles/nautical mile
- For the unit conversion between kg and tons: 907.185 kg/ton
- 6 Distance by sea between ports determined using with the port of Houston as the destination: http://ports.com/
- 7 To calculate the total CO₂ equivalency (CO₂e), the following global warming potentials (GWP) were used per 40 CFR 98 Subpart A.

25 CH₄ 298 N₂O

- 8 There are 1,000 kilograms in a metric ton and 1,000 grams in a kilogram.
- Distribution emission factors published by the EPA in April 2022 in Table 8: https://www.epa.gov/system/files/ documents/2022-04/ghg_emission_factors_hub. pdf

7. 2021 City of Austin Water

Billing Cycle Start Date	Billing Cycle End Date	Non-Irrigation Gallons*	Irrigation Gallons	Total Water (Irrigation & Non-Irrigation)	Non-Irrigation Discharge	Total water (liquor) barreled (gal)	Non-irrigation use (gal) per bottle
12/15/2020	1/16/2021	71,766	390,234	462,000	71,766	2,014	0.181
1/16/2021	2/13/2021	134,000	728,400	862,400	134,000	2,491	0.120
2/13/2021	3/16/2021	113,000	413,500	526,500	113,000	2,226	0.129
3/16/2021	4/16/2021	136,200	109,700	245,900	136,200	2,799	0.136
4/16/2021	5/17/2021	143,500	56,600	200,100	143,500	2,226	0.103
5/17/2021	6/16/2021	141,700	800	142,500	141,700	3,126	0.143
6/16/2021	7/16/2021	156,900	40,700	197,600	156,900	4,399	0.181
7/16/2021	8/16/2021	164,000	108,900	272,900	164,000	3,763	0.150
8/16/2021	9/16/2021	180,200	106,200	286,400	180,200	4,770	0.177
9/16/2021	10/15/2021	160,400	68,400	228,800	160,400	6,089	0.251
10/15/2021	11/12/2021	150,400	200	150,600	150,400	4,027	0.180
11/12/2021	12/15/2022	192,000	400	192,400	192,000	5,936	0.207
12/15/2021	1/17/2022	95,509	103	95,612	95,509	2,597	0.184
	Total	1,839,575	2,024,137	3,863,712	1,839,575	46,463	